
Beginners’ Guide to TSH
for UK organisers – by Stewart Holden

Version 1.5 (June 2009)

Main contacts:

Stewart Holden (UK): stewart@centrestar.co.uk, home 02890 868042 or mobile 07971 634098
Anand Buddhdev (Netherlands): arb@anand.org, home 00 31 20 345 2890 or mobile 00 31 623 925 983
John Chew (Canada): jjchew@math.toronto.edu, AIM username: poslmobile, mobile 001 416 876 7675 (NB: Toronto is 5 hours
behind UK time)

Introduction

TSH is the tournament software developed by John Chew. It has been constantly modified and improved since 1999 based on user
feedback and an ever-growing list of demands for various new features and it is widely recognised as the most powerful and
versatile tournament pairing system for Scrabble events. To summarise its main advantages:

• nearly all details can be entered in the configuration file in advance of the tournament
• the default pairings system, Chew Pairings, will calculate the fairest and most competitive pairings for any division

automatically. Options for round robin, king-of-the-hill, Swiss and manually-configured pairings are also included.
• the basic commands for showing pairings, standings and entering results are extremely simple
• every division can be run in the same copy of the program (even if using different pairings systems)
• mistakes are easy to correct
• standings and pairings printouts are very clear
• results are output in the best format for the ABSP Ratings Officer
• reports are automatically output and indexed for easy website coverage

This guide is divided into three sections: Installation, Configuration and Use. An appendix gives some example configurations.

Installation

TSH will run under Windows, Linux, MacOS and other operating systems. The instructions here are for Windows users. TSH is
written in the Perl programming language, so you'll need to install Perl on your computer. You can download an installer from
here:

http://www.absp.org.uk/perl.msi

This file is 16mb so it may take a while to download. After downloading the installer just run it, and accept the defaults to install a
regular setup of Perl.

TSH can be downloaded from http://tsh.poslfit.com

It is distributed as a ZIP file, so you just have to unzip it to a convenient location on your hard disk. One suggestion is to unzip it
to the root of the C: drive, so it is easy to locate and work with, or to place the folder on your desktop so it is easy to find.

IMPORTANT: TSH is constantly being updated and improved. You should update your copy of the program every time you
intend to use it. To do this you simply need to be connected to the Internet. Run the program as usual and type ‘update’ . The
latest version will download automatically from John Chew’s website and install itself into your existing copy.

Configuration

The main thing to know about running an event with TSH is that the vast majority of information is set up before the tournament
in a plain text file named config.tsh. This plain text file (open with Notepad or WordPad if using Windows) contains every piece
of information about your event, except for the list of player names which are written in a separate file. Thus the config file
contains:

• The number of divisions
• The number of rounds

• The kind of pairing required in every round (Swiss, KOTH, Round Robin). If you do not specify a system then Chew
Pairings will be used automatically; more on this below.

• Whether you want to enter the results as game scores or just using spreads
• The table numbers allocated to each division

There is an almost endless list of other features which can also be added to the config file, including but not limited to:

• reserving a table for one player throughout the whole event
• detailing how many prizes are available and thus allowing the program to work out automatically when Gibsonizing

should be applied in the later stages (see explanation of Gibson situations later).

Setting up the config.tsh file

Stewart or Anand will be happy to set up any config file for any tournament given a few days notice, but you should not hesistate
to give it a go yourself and then send it to one of them for checking over. There are also a few examples (based on common
tournament criteria) in the Appendix of this document. If you are using a config.tsh which someone else has already written you
can skip straight to the Use section of this document.

Having installed Perl and TSH, you should now be ready to set up a dummy tournament. Locate the TSH folder and go into it.
You will see some sample tournament folders already there named sample1, sample2, etc.. For the purpose of our example we
will use the fictional Oxford event from 2006. Create a folder named ‘06oxford’ inside the TSH folder. Go into it and it will be
empty. Now open a plain text editor such as Notepad or Wordpad or equivalent.

Firstly list all the divisions like this:

division a a.t
division b b.t (etc.)

This tells the program that it will find details of Division A’s players in a file named a.t, and so forth. We will create these files
later on.

If you are giving ratings prizes then add the following lines:

classes a 4
classes b 4 (etc.)

This is to specify four classes of player, hence there would be three ratings prizes in each division. Adjust as necessary. See also
the gibson_class option below (under Gibsonisation).

config realm = 'absp'

This is a multi-purpose instruction which covers a number of ABSP-specific requirements. Including this line means that:

• the default spread for byes will be 75 (as opposed to 50 in North America)
• table numbers will be calculated automatically in sequential order
• player names will be displayed in the format Name Surname
• starts and replies are tracked by the program and balanced as well as possible
• the ratings system used is the ABSP one

config director_name = 'Stewart Holden'
config event_date = '27-28 February 2006'
config event_name = 'Oxford 2006'
config html_top = '<p align=center>Oxford – 27-28 F ebruary 2006</p>'

The above lines are entirely optional and self-explanatory. The final line will make the words Oxford – 27-28 February 2006
appear at the top of the standings and pairings printouts (providing that you use the .html rather than .doc files).

config max_rounds = 11

Set max_rounds to let TSH know when the tourney ends. This helps TSH detect Gibson situations (see explanation later), and
also detect invalid round numbers. The value here isn't set in stone and extra rounds can be added later.

config html_in_event_directory = 1

This means the output files will appear in the 06oxford folder.

config reserved{'A'}[26] = 21

This will put Divison A’s player #26 on Board 21 for every round. This is useful for those with mobility issues. Please note that
you need to use Board number within each division rather than overall Table number. Thus if the player is in division C player
#17 and you want to fix them to the 11th board of that division you should use config reserved{'C'}[17] = 11

At this point you should have a plain text file on your screen which reads something like this:

division a a.t
division b b.t
config realm = ‘absp’
config director_name = 'Stewart Holden'
config event_date = '28-29 February 2006'
config event_name = 'Oxford 2006'
config html_top = '<p align=center>Oxford – 27-28 F ebruary 2006</p>'
config max_rounds = 11
config html_in_event_directory = 1

At this point, save this file as ‘config.tsh’ in the 06oxford directory.

The final thing to include in this config.tsh file is the pairing instructions. If you wish to use Chew Pairings (see below) then you
do not need to write anything at all, since the program will use this system by default in the absence of any manually entered
pairing instructions. Chew Pairings are perfect for most tournaments hence what follows is mainly for information purposes only.

Standard Swiss Pairing

If you wish to use Swiss pairing but not Chew Pairings, you will need to enter a separate line in the config file for each round. A
standard set of Swiss Pairings for Div A of a 6-game tournament with no repeats allowed will read like this:

autopair a 0 1 ns 0 0 a
autopair a 1 2 ns 0 1 a
autopair a 2 3 ns 0 2 a
autopair a 3 4 ns 0 3 a
autopair a 4 5 ns 0 4 a
autopair a 5 6 ns 0 5 a

The word autopair is followed by ‘a’ representing the division. Using the top line as an example, the 0 1 which come next
indicate that once all the scores for round 0 have been entered the program should create the pairings for round 1. The ‘ns’ which
follows stands for ‘new swiss’. The next number indicates how many repeat pairings each player is allowed, in this case 0 in
every round. The final digit indicates which round the pairings should be based upon (this is almost always the same as the first
digit in the line). Finally the division letter is repeated at the end.

Fontes Swiss

This uses the same pairing algorithms as Standard Swiss but with the difference that a round of pairings are based on the
standings at the end of the round-but-one previously. This means that for round 7 the operator can take their time to enter results
from round 6 rather than having to rush through them, since the round 7 pairings have already been generated based on round 5
results and printed during the previous round. When all results for round 6 have been entered the pairings for round 8 can be
generated and put on display for players to see as their round 7 game is ending, avoiding the need for a scrum of players to crowd
around the same piece of paper at the same time.

The simplest way to implement Fontes Swiss is to modify the autopair lines shown above, since they already specify which
round’s standings should be used to produce a certain round of pairings. For the first 1-3 rounds it may useful to use the ‘initial
fontes’ (IF) method which will generate small round robin groups matched by approximately equal rating. For example, using
these autopair lines for Div A:

autopair a 0 1 if 3 a
autopair a 2 4 ns 0 2 a
autopair a 3 5 ns 0 3 a

autopair a 5 6 ns 0 5 a

would mean that for rounds 1-3 the players were given an initial schedule of pairings based on starting rating (typically one player
from each quartile of the field based on pre-tournament rating). For rounds 4 and 5 the pairings are based on the standings after
rounds 2 and 3 respectively, meaning they can be printed out while the previous round is taking place. For round 6 it is often felt
that using the very latest standings is desirable enough to wait for all round 5 results to come in, hence the 5 6 in the final line
above. Many organisers are finding that using Fontes Swiss allows them to reduce the time between games by 5 minutes per
round, making it considerably easier to fit in an extra game for a one-day tournament.

Round robins (RR)

RR groups are so simple that it is not really worth specifying pairing instructions in the config file (although see next paragraph
should you want to do this). Simply open up TSH on the day of the event and type rr a to pair Div A with RR pairings for the
whole event. If the number of players and rounds do not create one or more perfect RR groups then ‘necklace’ or ‘oval’ pairings
will be produced automatically. If you want a ‘twin round robin’ where every player plays an opponent twice in succession before
moving on to the next person, use the command rr 2 a (as an aside, organisers should be aware that using a twin round robin
format means that one player falling ill will deprive a small number of opponents of two games each rather than twice that
number of opponents of a single game; this is usually a reason to prefer two separate round robin groups).

At the moment it is not possible to specify individual pairings within a round robin format. The round robins are calculated using
a preset formula which cannot be tampered with to allow certain matches to occur in certain rounds.

You can override the automatic pairings at any time so if, for example, you wanted to have RR pairings but then KOTH in the
final round you can still use the rr a command but then before the final round instruct the program to produce KOTH pairings
instead (the command to type in the program window is simply ‘koth’).

Chew Pairings will automatically begin with one or more round robins if there are enough rounds in the schedule to do so. Note
that if you want to save your computer operator from having to type ‘rr a’ etc. on the day of the event you can include the line
autopair a 0 1 rr a in the config file which will do the job for you.

Chew Pairings

Chew Pairings are similar to Swiss pairings but with additional modifications implemented automatically. This can include a very
limited number of repeat pairings if (and only if) this allows more players to remaining in contention for prize-winning positions
than using regular Swiss pairings. The central principle is that no player should be excluded earlier than necessary from
potentially finishing in a prize; this can sometimes happen accidentally if straight, unmodified Swiss pairings are used. Chew
pairings are suitable for small one-day events as well as major operations such as the BMSC and UK Open. If you do not enter
any ‘autopair’ or other pairing instructions when writing the config.tsh file then Chew Pairings will be generated automatically.

If using Chew Pairings you should specify the prize-winning positions in each division in config.tsh thus:

config prize_bands{'A'} = [2,3,4,5]

This specifies which final ranks are to be considered equivalent for pairings purposes: the numbers given mark the end of each
band (range) of equivalent prizes (ranks). In the example, the top prize band goes from 1st place to 2nd place (presumably
because the top two finalists qualify for a playoff); each of 3rd, 4th and 5th place is its own prize band (presumably awarding
players cash prizes); and everything from 6th place on is the last prize band (presumably winning nothing).

The following more technically-worded explanation of how Chew Pairings create pairings is adapted from the TSH
documentation:

Chew pairings draw on Swiss pairings and the two-victor pairing system developed for the 2003 Canadian NSC and refined at
various major North American events since then. Tournament simulations determine which players are still in contention; the
minimum number of repeats required to pair those players is computed; the contenders are split into leaders and nonleaders so
as to minimize the number of leaders while not increasing the required number of repeats. Beginning at the top, each leader is
paired with the lowest-ranked other leader who can catch up to him/her; the nonleaders are paired Swiss.

Chew (or similar) pairings should be used in tournaments where after a number of preliminary rounds two or more top players
are selected to compete in final rounds. They are also sufficiently flexible that they may be used in any sort of tournament, and
are therefore used as tsh’s default pairing algorithm.

Note that Chew Pairings will occasionally give one or two repeat pairings for the top-ranked players in the final round of a six-
game event, because there is a strong preference for pairing those who could potentially win the tournament against each other

rather than against players who cannot. If you want to avoid this use the example autopair lines given in the Swiss Pairings
section above.

The player files

As well as writing config.tsh you will need to create a separate plain text file for each division, containing the names of the
players. These should have the names and ratings written in the following format: Surname, Firstname <space> rating. For
example:

Smitheram, Brett 198
Allan, Paul 194
Martin, Ed 192
Kirk, Terry 185

Save the player name files as a.t, b.t, etc. as appropriate.

Tip: In the days before your event you should create one single player list (for everyone at the tournament) in one single text file,
with names written in the above format in ratings order. Then if rejigging of divisions becomes necessary on the day (as it
inevitably does), you can simply cut and paste the player names into the appropriate a.t, b.t, etc. files and save them accordingly.

If you are setting up a team event, use the following format:

Hawkins, Chris 174 ; ; team peterborough
Perry, Steve 174 ; ; team
Robinson, Jared 172 ; ; team nomads

The area between the two semicolons on each line will be filled in by TSH later with game scores. Note that Steve Perry does not
belong to a team here; this example fits the current UK NSC Regional events where some players are also competing in the
National Club Knockout Qualifier, whilst others are playing as ‘unattached’ individuals.

Now that you have the config.tsh and the player files (a.t, b.t, etc.) saved into the 06oxford folder you can run the program. Go
back to the folder above 06oxford and click on the tsh.pl icon.

What if it says it can’t find my config file?

If you get a message saying that the program is going to open using one of the sample events, this means it can’t find your
config.tsh file. A common reason for this is that Windows has an irritating habit of automatically giving all text files a .txt
extension and then hiding this extension so that it doesn’t show up in the folder window. Thus your config file may actually be
named config.tsh.txt but with the second extension being invisible. To correct this, go to Control Panel -> Folder Options, click
on the View tab and then make sure option Hide extensions for known file types is turned OFF. If you have just turned this off,
you may go back to your 06oxford folder and find the files you thought were called a.t are actually called a.t.txt – if this is the
case, delete the extraneous extension (don’t forget to change config.tsh.txt as well) and TSH should now be able to find the files.

Gibsonization

This term describes a situation which can occur late in a tournament, where one player is already guaranteed to win the top prize
and cannot be overtaken. In events where the top two finishers qualify for a head-to-head final it can also describe a player who is
guaranteed a place in this final no matter what happens in the remaining rounds. In this situation the player in this safety zone is
not playing with the same motivation and under the same pressure as those in the top position who are still competing for places.
Gibsonization (named after US player David Gibson to whom this first applied in the 1995 AllStars tournament) pairs this player
against the highest-ranked player who cannot finish in a prize position, effectively removing the Gibsonized player from
influencing the results of the players near him/her. TSH can be told to automatically detect when a player should be Gisonized;
please refer to the full TSH documentation if you want to know the exact criteria applied by the program when working this out.

It may be desirable for players competing for a ratings prize to be prevented from being paired against a Gibsonized player. There
is an additional config line which can be added to ensure that a Gibsonized player will only be matched against 'Class A'
opponents: config gibson_class = 'A'
What else?

The many other options available can be found by reading the full TSH documentation, which is included with every copy of the
program and found in the ‘doc’ folder. You can also open the full manual from within TSH by typing doc at any point. Here are
some extra config lines commonly included by UK organisers:

config no_ranked_pairings = 1 (produces A-alpha-pairings.html ONLY and not the duplicate A-pairings.html which we don't
use. Avoids cluttering up folder.)

config no_text_files = 1 (.doc files will not be produced. Avoids cluttering up folder.)

config board_stability = 1 (If possible TSH will keep one player on the same board from one round to the next, to reduce
moving around. Use this, it's brilliant!)

config check_by_winner = 1 (this means the Scores reports always list the winner first. Compare
http://www.centrestar.co.uk/09belfast/html/A-scores-006.html with http://www.centrestar.co.uk/09ukopen/html/A-scores-
006.html (the latter is not in order, mixture of positive and negative spreads))

config random_rr_order = 1 (this randomises the order in which a RR is played. Otherwise it will use the default of pairing
the highest-rated player against players in reverse order so that 1 v 2 happens in the final round). Use this config line when you
are running a tournament with more than one RR group reduces the probability of misentering results by accidentally being in the
wrong division because it is much less likely that the same two player numbers will have played each other in the same round.

**

In the days or weeks leading up to your event you should send your config.tsh file to one of the contacts listed at the start of this
guide, who will be happy to read through it and check that everything makes sense. They will all be happy to advise on any
improvements and raise any queries. This will enable you to go into the tournament room fully prepared and confident to use the
program on the day.

Use

Once the config.tsh and division files have been created, you are now in a position to run the program for the first time. To do
this, run the tsh.pl file found in the main TSH directory.

The program will automatically search everywhere within the TSH folder and start up using the most recently saved version of
config.tsh it can find. Thus the config.tsh files in the sample folders will be ignored since 06oxford/config.tsh will be more recent.

Basic commands for using the program:

sp Show Pairings: This needs to be qualified with a round number and a division. Typing sp 1 a will give you the pairings
for the first round in Div A. Typing sp 3 c will show you the pairings for the third round in Div C (as soon as
they are known).

st Standings: This needs to be qualified with a divison. st a will show you the standings in Div A, etc.

Every time you use either of the above commands, the output is displayed on the screen and automatically written to .doc and
.html files in the 06oxford directory. There is no need to give the program separate commands for writing the pairings/standings
to a file and then converting them to printable format, this is all done automatically in the 06oxford folder every time you use the
sp or st commands on the screen. The files are automatically overwritten every time you use one of these commands, meaning
that you can keep all relevant windows open and simply refresh the page to see the latest pairings/standings once they have been
generated onscreen (Firefox web browser has a tabbing feature which works brilliantly with this, allowing you to open all
standings and pairings files in the same browser window and just click the Refresh button every time you generate new pairings
or standings).

a Add Results: This needs to be qualified by a round number and division. Once the results start to come in, type a 1 a if
you wish to begin entering results for round 1 in Div A. You will be told how many players are still playing in
the division. If you are entering game scores the format required is <player 1><score><player 2><score>, for
example 6 501 2 367 – the spread is not required. The format required if you are entering spreads is: <player 1>
<player 2> <spread>. For example if player number 6 has beaten player number 2 by 134, you would enter 6 2
134. Note that if you are not collecting game scores at all then many of the tournament statistics features will
not work.

When a result is added TSH will display: Shin, Austin (4.0 +477) – Violett, Bob (2.0 -66). The data in brackets here represents
the player’s current total wins and spread in the event. The first name listed will be the winner in the result you have just entered.
You now have the option of entering another result for the same division or pressing RETURN to go back to the command line. If
you now want to enter results for Div C, press RETURN to stop entering results for Div A, type a 1 c and continue from there.
There is now a shortcut for changing divisions; you can simply enter the division letter and press RETURN to switch immediately
between divisions.

If one player has entered the wrong player number and you try to put this in as a result, the program will advise you that that the
two players you have entered did not play each other in that round. If you do not have the correct player number on hand you can
enter the player’s name instead in the format surname,forename. You only need to enter enough characters of the surname and
forename to differentiate them from any other player in the division. For example if Gareth Williams was the player in question
and he had beaten player 11 by 501-403, entering the game result as will,gar 501 11 403 would work just as effectively as using
his player number.

If a player is absent then they and their opponent should be manually repaired as byes. For instructions on how to do this please
see the full manual.

Additional commands:

The complete list of commands can be found in the manual but here are a few others you may find useful or interesting:

rosters Use this at the start of the event to print a complete list of player names.

huh If you aren't sure what an error message means, look to see if it has a code in [square brackets] at its end. If so, type huh
followed by that code to ask for an explanation in plain English. If you omit the code, TSH will explain the
most recent error message.

sc Displays a player's scorecard – their complete record of opponents, scores, etc.

sdsc In order to produce printouts listing every player’s pairings for the whole event, use the command sdsc a (where a is the
division). This command is an abbreviation of ShowDivisionScoreCards. The program will automatically create
.doc and .html files in the 06oxford folder which can then be printed and handed to the players. If using the
.html files please note that they will print correctly with each player’s scorecard beginning on a new page.

es Editscore: If you make a mistake when entering results you can correct it by changing the scorecard of either of the
players involved. The usage is es division player round, so to correct a score for the Div C’s player 3 in the
fifth round, type es c 3 5. Simply typing es will produce a prompt for you to enter these variables in the correct
order. For help on how to edit scores, type help es.

NB: If you have already generated pairings for the next round and subsequently been notified that a result has been input
wrongly then you will need to fix the problem and then generate new pairings. After using es to fix the result
you should use the unpairround command (upr), for example upr 6 a to delete the old pairings for Div A
round 6. Then use sp 6 a as normal to generate new pairings based on the revised results. Simply typing sp 6 a
without unpairing and repairing would just display the old (incorrect) pairings again.

rand This will enter random results for a whole division. Useful when experimenting with the program in order to avoid

entering data manually. Needs to be qualified by division, e.g. rand b. Enter a string of letters such as rand
aaabbb to generate three rounds of random results for divisions A and B.

missing This shows which games have not yet had results entered. It needs to be qualified by a round, e.g. missing 3.

crs CheckRoundScores: This will display a given round's scores on the screen. It also outputs the 'scores' pages seen during
live coverage. If you are providing live web coverage at any point you should use this command after every
round.

dryrun Generates rand results for a whole tournament. Use this to see if the autopair lines you have written will work and to
judge how many repeats there are likely to be, etc. Use reseteverything to undo the dryrun. This latter
command is extremely powerful, it will delete ALL results and pairings for all divisions for all rounds; proceed
with extreme caution!

abspgrid At the end of event, use this command for every division (e.g. abspgrid a) to output .doc files into 06oxford for
sending to the ABSP Ratings Officer.

truncaterounds This will delete all scores and pairings back to whichever round you specify. Entering truncaterounds 0 a will
remove all data for Division A allowing you to pair the first round again and proceed from there.

tuffluck Will display the players with the smallest combined losing spreads over a specified number of games. Needs to be

qualified the number of games to base it upon and the division. For example tuffluck 4 a will list the Div A
players who have the lost four games by the smallest combined total, starting with the ‘unluckiest’. This
information can be used for awarding ‘Tuff Luck’ spot prizes.

luckystiff The opposite of TuffLuck, this specifies the n narrowest victories.

hw, hl, etc. Various commands like hw (high wins) and hl (high losses) produce the self-explanatory reports after the
tournament. Refer to the TSH manual for the complete list of statistical outputs that can be produced. You can
produce all reports at once using stats command (see next item).

stats This is the cover-all command which generates all available some more statistics about your event, namely high wins,
high losses, low wins, low losses, upsets, averages, total score and wallcharts.

help Every single command in TSH has a help file associated. For example if you cannot remember how to edit scores
correctly, type help editscore or help es.

doc Typing “doc” brings up the full TSH manual in a browser window.

Byes

If a player misses a round there are several options available depending on the circumstances:

If the division has an odd number of players then each person will be sitting out in turn. The program will still require results for
all players (including the bye), so for the player sitting out simply enter their player number followed by 0. For example if player
14 has the bye, enter their result for that round as 14 0.

If a player is due to play but misses the round (lateness, illness, etc.), the opponent should be given a win by 75pts and the
missing player a loss by 75pts. In this case enter two separate results as <winner player number> 75 and then separately
<missing player number> -75 (NB: this is minus seventy-five). Take note of the importance of enterting these two results as
separate entries, not simply putting them in the same line which would give an erroneous game score of 75 vs. -75.

If you know a player will be missing for several games in succession and you want to remove them from the tournament, either
temporarily or permanently, you should turn them OFF (don't worry, they can be turned back ON later). If player 4 in division A
should no longer be paired, enter es a 4 0 to begin editing the player's scoresheet, then enter off -75 to give them forfeit losses
whenever pairings are computed. (off 75 will give them a 75-point bye, and off 0 will record a missed game without assigning a
win or loss). If the player subsequently returns to the tournament, you can re-enable their pairings by entering on while editing
their scorecard.

**

This guide is only an introduction to TSH. For a list of the many, varied features it offers and full explanation of all the
commands you are strongly advised to read the accompanying documentation, which is likely to make a lot more sense now that
you have read this basic guide. John Chew welcomes questions and feedback on any aspect of the program and with sufficient
notice can implement specific requirements into the latest version in time for your event. Stewart Holden and Anand Buddhdev
are experienced users who will be happy to answer questions. There is also a TSH users group found at
http://www.groups.yahoo.com/group/tsh-users/ which is read by many users around the world and is the forum through which
John Chew announces new updates and features.

The Appendix to this guide gives some example configurations for past UK events.

Live coverage and the CentreStar website

If you would like score data and statistics to be put on the CentreStar website for others to examine after the event please email
the config.tsh file and division files (a.t, b.t, etc.) to Jared Robinson (jared@centrestar.co.uk) who will be happy to upload them
and notify the relevant mailing lists.

If you want to provide coverage on the CentreStar website during the event you will need to ask either Jared Robinson or Stewart
Holden to create the relevant links and directories on the website. You will also need to ask them for the password shown as
****** below.

Firstly add the lines below to your config.tsh file, replacing 06oxford with the appropriate tournament folder name which must be
identical to the tournament folder name on your own computer.

config ftp_host = 'www.poslfit.com'
config ftp_username = 'centrestar@poslfit.com'
config ftp_password = '******' (see above)
config ftp_path = '06oxford'
config ftp_no_overwrite = 1

Open TSH and keep it running in the background. Then go into the TSH folder on your computer, find the folder named util and
open mirror-ftp.bat . This will open in a different window to the main program. The mirror facility is a separate script which will
now automatically copy the contents of your event's html folder directly onto the CentreStar website in the location you have
specified. It checks for new updates periodically; the default is every 60 seconds.

Note that the mirror-ftp facility is still under development and you may find that it encounters occasional errors which will cause
it to close. If you notice that the mirror-ftp script is no longer running (and has probably disappeared from your Windows toolbar
altogether), go back into the util folder and restart mirror-ftp.bat . It will then catch up with what it has missed.

The address for live coverage will be in the format: http://www.centrestar.co.uk/06oxford/html/index.html

The crs command in TSH will display a given round's scores on the screen. It also outputs the 'scores' pages seen during live
coverage. If you are providing live web coverage at any point (either during or after) you should use this command after every
round.

END

Appendix

Examples of config.tsh files

1) Standard one-day event. 4 divisions, 7 games. Chew Pairings used so there are no ‘autopair’ instructions.

division a a.t
division b b.t
division c c.t
division d d.t

config realm = ‘absp’

config director_name = 'Stewart Holden'
config event_date = '21 April 2007'
config event_name = 'Romford (Collier Row)'
config html_top = '<p align=center>Romford (Coll ier Row) - 21st April 2007</p>'

config max_rounds = 7

2) Durham 2007. One large Div A paired for each round based on the standings after the previous round, with KOTH in the
final round. Div B-H were round robin groups paired by simply typing ‘rr b’, ‘rr c’ etc. on the day of the tournament and
hence there are no autopair commands for these divisions. 11 rounds.

division a a.t
division b b.t
division c c.t
division d d.t
division e e.t
division f f.t
division g g.t
division h h.t

config realm = 'absp'
config html_in_event_directory = 1

config director_name = 'Stewart Holden'
config event_date = '14-15 April 2007'
config event_name = 'Durham 2007'

config max_rounds = 11

autopair a 0 1 ns 0 0 a
autopair a 1 2 ns 0 1 a
autopair a 2 3 ns 0 2 a
autopair a 3 4 ns 0 3 a
autopair a 4 5 ns 0 4 a
autopair a 5 6 ns 0 5 a
autopair a 6 7 ns 0 6 a
autopair a 7 8 ns 0 7 a
autopair a 8 9 ns 0 8 a
autopair a 9 10 ns 0 9 a
autopair a 10 11 koth 1 10 a

NB: In the final round’s autopair command the digit after ‘koth’ changes from 0 to 1, since this indicates how many repeats are
allowed. There are no pairing instructions for any division other than A since they were all simple round robin groups and TSH
will do this by default if the number of players and rounds are suitable.

3) UK NSC Regional event. One division, six rounds. Top 10 places qualify for next round of NSC. Team members cannot
play each other (this is known as ‘exagony’).

division a a.t

config realm = 'absp'
config no_text_files = 1
config html_in_event_directory = 1

config exagony = 1

config prize_bands{'A'} = [10]
config reserved{'A'}[26] = 21
config show_teams = 1

config director_name = 'Chris Hawkins'
config event_date = 'Saturday 9th June 2007'

config event_name = 'NSC/NSCT Midlands 2007'
config html_top = '<p align=center>NSC/NSCT Midl ands Qualifier - Saturday 9th June 2007</p>'

config max_rounds = 6

With accompanying a.t file showing team names, as explained in main document. For an explanation of some of the above com-
mands (e.g. exagony, prize_bands, no_text_files) please refer to the full TSH documentation included with the program.

4) British Matchplay Scrabble Championship 2007. Div A is Swiss paired with one repeat allowed after round 14, last round
KOTH. Div B is Swiss paired with no repeats, then KOTH in the last round. Div C-F are round robins of 17 players with one
player sitting out per round, then the 18th round KOTH. Prize positions are top five in Div A and top three elsewhere. Three
ratings prizes in Div A and two ratings prizes in Div B, none in the other divisions. Board 3 in Div F reserved for player #9.
Gibsonization allowed.

division a a.t
division b b.t
division c c.t
division d d.t
division e e.t
division f f.t

classes a 4
classes b 2

config reserved{'F'}[9] = 3

config prize_bands{'A'} = [1,2,3,4,5]
config prize_bands{'B'} = [1,2,3]
config prize_bands{'C'} = [1,2,3]
config prize_bands{'D'} = [1,2,3]
config prize_bands{'E'} = [1,2,3]
config prize_bands{'F'} = [1,2,3]

config html_in_event_directory = 1

config realm = ‘absp’

config gibson = 1

config director_name = 'Ian Burn'
config event_date = '25-27 August 2007'
config event_name = 'BMSC 2007'
config html_top = '<p align=center>British Match play Scrabble Championship
Yarnfield Park, 2 5th-
27th August 2007</p>'

config max_rounds = 18

autopair a 0 1 ns 0 0 a
autopair a 1 2 ns 0 1 a
autopair a 2 3 ns 0 2 a
autopair a 3 4 ns 0 3 a
autopair a 4 5 ns 0 4 a
autopair a 5 6 ns 0 5 a
autopair a 6 7 ns 0 6 a
autopair a 7 8 ns 0 7 a
autopair a 8 9 ns 0 8 a
autopair a 9 10 ns 0 9 a
autopair a 10 11 ns 0 10 a
autopair a 11 12 ns 0 11 a
autopair a 12 13 ns 0 12 a
autopair a 13 14 ns 1 13 a
autopair a 14 15 ns 1 14 a
autopair a 15 16 ns 1 15 a
autopair a 16 17 ns 1 16 a
autopair a 17 18 koth 2 17 a

autopair b 0 1 ns 0 0 b
autopair b 1 2 ns 0 1 b
autopair b 2 3 ns 0 2 b
autopair b 3 4 ns 0 3 b
autopair b 4 5 ns 0 4 b
autopair b 5 6 ns 0 5 b
autopair b 6 7 ns 0 6 b
autopair b 7 8 ns 0 7 b
autopair b 8 9 ns 0 8 b
autopair b 9 10 ns 0 9 b
autopair b 10 11 ns 0 10 b
autopair b 11 12 ns 0 11 b

autopair b 12 13 ns 0 12 b
autopair b 13 14 ns 0 13 b
autopair b 14 15 ns 0 14 b
autopair b 15 16 ns 0 15 b
autopair b 16 17 ns 0 16 b
autopair b 17 18 koth 1 17 b

autopair c 0 1 rr c
autopair c 17 18 koth 1 17 c

autopair d 0 1 rr d
autopair d 17 18 koth 1 17 d

autopair e 0 1 rr e
autopair e 17 18 koth 1 17 e

autopair f 0 1 rr f
autopair f 17 18 koth 1 17 f

You will undoubtedly have more questions on finer points of using the program but hopefully this has provided a good starting
point. Please contact one of the following who will be happy to anwer any queries.

Stewart Holden (UK): stewart@centrestar.co.uk, home 02890 868042 or mobile 07971 634098
Anand Buddhdev (Netherlands): arb@anand.org, home 00 31 20 345 2890 or mobile 00 31 623 925 983
John Chew (Canada): jjchew@math.toronto.edu, mobile 001 416 876 7675 (NB: Toronto is 5 hours behind UK time).

